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A few statistical propert,ies of fine-scale velocity and temperature fluctuabions 
have been measured on the axis of symmetry of a heated turbulent round jet. 
The probability density of a8/ax, the streamwise derivative of the temperature 
fluctuation, is strongly negatively skewed, indicating a lack of isotropy for the 
fine-scale temperature structure. An estimate of the correlation between the 
velocity and temperature dissipation fields has been obtained by assuming that 
the dissipation of velocity and dissipation of temperature can be approximated 
by (au/ax)2, where u is the streamwise velocity fluctuation, and ( M / ~ x ) ~  respec- 
tively. The correlation between the quantities (aulax)," and (%?/ax):, averages 
over a volume of linear dimension r ,  is fairly high and depends on the choice of v. 
An analysis shows that this correlation plays a vital role in the prediction of 
high-order structure functions of u and 8. The assumed lognormality of the 
probability density of (au/ax): and (N/ax)$and of their joint density is found to 
be reasonable over a range of r corresponding to the inertial subrange. 

1. Introduction 
The modification by Kolmogorov (1 962) and Oboukhov (1 962) of Kolmogorov's 

(1941) local isotropy and similarity hypotheses to allow for the fluctuations in E ,  

the rate of dissipation of turbulent energy, has led to a number of important 
consequences with regard to  the small-scale properties of turbulence. Yaglom 
(1966) showed that the fluctuations in E result in a change to  a k - l + P  behaviour 
for the spectrum of E in the inertial wavenumber range ( k  is the wavenumber 
2nf/U, where f is the frequency and U the local mean velocity), where p is a 
universal constant according to Kolmogorov's (1 962) third hypothesis, and equal 
to about 0.5. Yaglom also showed that the fluctuations in E lead to  an inertial- 
subrange spectral shape of the streamwise velocity fluctuations u of k-3-3'. The 
decrease in the exponent of k from its usually assumed value of -+ is clearly 
within the scatter of experimental data. Whilst the influence of c fluctuations on 
second-order moments of the velocity u can be neglected, their influence on 
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higher-order moments of au/ax can be exemplified by the strong Reynolds 
number dependence of experimental data on ( a u / a ~ ) ~  and (au/ax)* (for a 
summary of the available experimental data see Kuo & Corrsin 1971). 

Van Atta (1971) considered the influence of fluctuations in E or x, the dissipa- 
tion of passive-scalar fluctuations, on turbulent scalar characteristics in the 
inertial subrange. He showed that these characteristics are not only influenced 
by E and x but also by the correlation between the two dissipation fields. Over 
a range of all possible values of this correlation, Van Atta showed that the 
inertial-subrange power law for the spectrum of scalar fluctuations would range 
from k-139 to  k-1.78, a variation which is once again too small to  be detected 
experimentally. There are no available experimental data on the correlation 
between x and E .  The aim of the present work is to obtain a measure of this corre- 
lation on the axis of symmetry of a heated round jet, assuming that E and x 
can be approximated by (L+u/ax)z and (a6'/ax)2 respectively (8 is the temperature 
fluctuation). The influence of the fluctuations of E and x on structure functions 
of velocity and temperature fluctuations in the inertial subrange is examined in 
$4. Some of the assumptions made with regard to t'he statistical properties of 
er and xr, the values of E and x averaged over a volume of linear dimension r,  and 
of the product erxr have been experimentally tested ( 3  5). 

2. Experimental techniques and conditions 
The time derivatives of velocity and temperature fluctuations were obtained 

simultaneously on the axis of symmetry of a heated turbulent round jet 
developing in a co-flowing external stream. A description of the heated-jet 
facility can be found in Antonia & Bilger (1973). At the exit from the nozzle (of 
diameter 15.9mm) the temperature and the velocity q. of the jet were kept 
constant a t  190 "C and 44 m s-1 respectively. The velocity U, of the external 
stream a t  the ambient laboratory temperature was in general 2-6 m s-l but a few 
measurements were also made for U, = 7.9 m s-,. 

The velocity and temperature fluctuations u and 6' were measured with two 
platinum-plated tungsten wires 5pm in diameter placed in a parallel array on 
the same probe with the body of the probe aligned with the axis of the jet. The 
wire length was equal to 1.0 mm and the separation in the radial direction between 
the wires was 0-4mm. One of the wires was operated as a 'cold' wire by the 
DISA 55M20 constant-current bridge of a DISA 55M01 anemometer system. The 
other wire was operated as a 'hot'  wire with an overheat ratio of 0-8 on the 
DISA 55M10 constant-temperature bridge of a second DISA 55MOl anemometer 
system. 

The cold wire was run a t  a current of 2 mA. At this current the sensitivity to  
velocity was found to be negligible. The signal from the constant-current bridge 
was compensated using a frequency compensator designed to maintain a flat 
frequency response up to 20kHz (the time constant of the wire was typically 
0.56 ms at  8 m s-l). The compensated signal was subtracted from the hot-wire 
signal in a DISA 55D26 signal conditioner. Before subtraction, the temperature- 
contaminated velocity signal from the hot wire was fed into a variable-gain 
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amplifier, as shown in figure 1. The setting of this amplifier was determined by 
the temperature sensitivity of the hot-wire signal, inferred by calibration of the 
hot wire in the potential core of the heated jet. The calibration was carried out 
over a velocity and temperature range covering the experimental conditions. 
The two resulting signals (see figure l), proportional to only either the velocity or 
temperature fluctuations, were then differentiated by identical differentiator 
circuits (with a linear frequency response up to 20 kHz and a fall-off of 6 db/octave 
on both sides of this peak). The differentiated signals were recorded on a Philips 
ANALOG-7FM tape recorder at 76.3 mm s-l (the frequency response of the tape 
recorder was checked to  be flat up to 10 kHz). The recorded signals were played 
back a t  190.5 mm s-l and digitized to I1 bit accuracy a t  a frequency of 3 kHz 
per channel (real-time sampling frequency of 12 IrHz). Prior to digitization, the 
signals were low-pass filtered using two closely matched filters with the cut-off fre- 
quency set a t  1.5 kHz (a real-time frequency of 6 kHz). The 6 kHz cut-off setting 
was selected using the estimated Kolmogorov frequency of 5.4 kHz (see below) 
on the axis of symmetry of the jet at x/d = 59 (x is the distance from the nozzle 
and d is the nozzle diameter) for C$/Ul = 16.3. 

All of the results presented in $ 3  were obtained a t  x/d = 59, where 

(u"&/U = 0.16 and (02)t/T = 0.07, 

U and T (measured in "C) being the local mean velocity and temperature respec- 
tively. The Kolmogorov microscale 91, defined as (v3/(e))*, where vis the kinematic 
viscosity and (c) the dissipation of turbulent energy, is equal to 0-15mm. The 
frequency corresponding to the ?-scale convection past the wire is given by 
U/2ny and is approximately 5.4kHz. It should be noted that, although 71 is 
comparable with the distance between the wires, it is significantly smaller than 
the length I (1 mm) of the wires. The attenuation of the high frequency content 
of the u and 8 spectra as a result of the relatively high value of 117 cannot be 
easily estimated but the correction of Wyngaard (1968), based on the assumption 
of isotropy, suggests that the attenuation can be as much as 30% when k17 = 1. 
The correction of Wyngaard (1971 a )  for the spatial resolution of a cold wire 
shows that, €or the present value of l /q7 the measured value of (x> could be 
underestimated by as much as 30 "/. 
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FIGURE 1. Block diagram of analog and digital processing. 
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FIGURE 2. Records of simultaneous velocity and temperature derivatives 
(ordinate units are arbitrary). 

3. Experimental results for aO/at and aO/at 

Computer plots of records of aO/at and &/at at z/d = 59 shown in figure 2 
reveal the more intermittent behaviour of aO/at in relation to that of the velocity 
derivative. The probability densities of a6/at and aulat are given in figure 3 and 
are normalized such that the areas under the curves are equal to unity. Although 
the probability density p(au/at) of &/at deviates significantly from the Gaussian 
distribution, p(aO/at) shows even stronger departures from the normal curve near 
zero values of aO/at. The skewness 8; of au/at, defined as 

((a+ I”/ (( au/at)2)% 

is 0.30 whilst the flatness factor F; = ((au/at)*)>l((a~/at)~)~ is 6.4. The turbulence 
Reynolds number R,, defined as (u2)*h/v, where h is the Taylor microscale 
(A2 = (u2)/((au/ax)2)), is 240. The value of F; is in good agreement with that 
obtained by Kuo & Corrsin (1971) for a corresponding value of R, on the axis of 
an isothermal round jet issuing into still air. The magnitude of AS’; is somewhat 
smaller than the mixing-layer value reported by Wyngaard & Tennekes (1970) 
but in reasonable agreement with the measurements of Antonia (1973) in the 
inner region of a boundary layer. 

The flatness factor of a81at is approximately 13.0, which agrees substantially 
with the R, trend of the available measurements of Fi reported in Antonia & 
Van Atta (1974). It should be noted that, although the values of Fo are con- 
siderably higher than those of F;, the rate of increase of 4 with R, (Antonia & 
Van Atta) is only marginally higher than that for F;, as predicted in Kuo & 
Corrsin (1971), at  least for R, greater than 300. For isotropic turbulence, the 
skewness of &/ax must be negative as - ( ( a u / a ~ ) ~ )  represents a production rate 
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FIGURE 3. Probability density of velocity and temperature derivatives. 
0, P ( 6 ;  0, p ( t i ) ;  __ , Gaussian distribution. 

of mean-square turbulent vorticity (cf. Saffman 1968; Wyngaard 1971 b). The 
skewness of at!?/ax must be zero in isotropic turbulence to satisfy the requirement 
of invariance with respect to reflexion and rotation of the co-ordinate axes. For 
non-negligible velocity contamination of the cold wire, Wyngaard (1971 b) shows 
that, again for isotropic turbulence, the measured value of ((a19/ax)~) must be 
positive. The skewness of aO/ax is equal to -0.7. This value is in reasonable 
agreement with a measurement by Gibson & Masiello (1972) on the axis of a 
heated jet, but of opposite sign to the boundary-layer (Gibson, Stegen & Williams 
1970) and wake (Freymuth & Uberoi 1971, 1973) measurements. Using the 
expression for the velocity sensitivity of a cold wire given by equation (29) in 
Wyngaard's (197 1 b) paper, the velocity sensitivity for the present wire operating 
conditions is estimated to be about 0.012 'C/m s-l. This then leads to a velocity- 
induced skewness of M/ax of 0.014 (obtained using equation (22) in Wyngaard's 
paper), which is clearly negligible when compared with the measured value. Also, 
Wyngaard's analysis overestimates the skewness error, as it employs a correlation 
coefficient X,, = ( (aO/&)z  (au/ax))/((aO/ax)2) ((au/ax)2)4 of - 2-05 whilst the 
measured value is - 0-27.t 

The present value of Xi, and the values reported in Freymuth & Uberoi (1973) 
tend to indicate a rather strong departure from local isotropy conditions on the 
axis of symmetry of both axisymmetric jets and wakes. Gibson, Friehe & 
McConnell (1 973, private communication) have suggested that the local 

t Clay (1973) obtained a value of - 0.40 for XT when the streamwise separation between 
the velocity and scalar sensors was less than 0.57, whilst ST is close to  zero when the 
separation is about 57. The present magnitude of XT is probably too high when the present 
radial separation 37 between the two wires is taken into account but it should also be 
noted (Van Atta 1974) that the magnitude of ST may increase slightly with increasing R,. 
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FIGURE 4. Spectra of 6 and ti. 

anisotropy of the temperature field might be associated with temperature jumps 
occurring across a system of large eddies rolling with the mean vorticity 
of the shear flow. Evidence of this large-scale structure behaviour can be seen 
in the conditionally sampled temperature measurements of Fiedler (1974) in the 
two-dimensional mixing layer and of Antonia (1974) in the axisymmetric jet. 

Figure 4 shows computer plots of the spectra of a8lat and au/at, which can be 
interpreted as dissipation spectra of the temperature and velocity fluctuations 
respectively. The spectra were obtained by applying the fast Fourier transform 
algorithm with a block length of 2048 samples and performing an ensemble 
average over 60 blocks. At the present sampling frequency of 12kHz, this 
amounts to an overall sample duration of 10.24 s (this value was used for com- 
puting all the results presented in this paper). The standard deviation for each 
spectral estimate was found to be less than 15%. The variances of aO/at and 
&/at for a given frequency band have been normalized by ((aO/at)2) and 
((au/at)z) and the scaling in figure 4 is such that 

Both spectra peak near k , ~  = 0.15 but the extent of the inertial subrange in the 
au/at spectrum (q5; N (e )*ki )  is somewhat larger than that for a8/at 

(#h ( X ) ( " ) - w .  
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4. Structure functions of velocity and temperature in the inertial 
subrange 

The statistical properties of the velocity and temperature fluctuations of a 
scale comparable with the Kolmogorov microscale 7 are assumed to be a function 
of v, the kinematic viscosity, a, the thermal diffusivity of the fluid, and xr and e?, 
the dissipation of temperature and dissipation of velocity fluctuations respec- 
tively averaged over a volume of linear dimension r .  The averaging was included 
in the refined hypothesis of Kolmogorov (1962) to allow for the influence of the 
spatial or temporal fluctuations of 8 on the behaviour of the small-scale velocity 
fluctuations. If we consider the quantities Au and A8, where 

and A u  = u(x + r ,  t )  - u(z, t )  A 8  = 8(,r + r ,  t )  - O(T, t ) ,  

then, in general, 

with the averaging performed over only fixed values of er and xr (Oboukhov 
1962; Van Atta 1971). Averaging over all occurrences of er and xr gives 

((Au), (AW),, Xr  = c,, I'a@.b@&;, 

((Au),(AO)n) = C,, V%~Y'(E?X:). ( 1 )  

Dimensional considerations yield e = in ,  c = n - m + 4d and a + b = m - 3d - in. 
The C'w,n are universal constants which depend on the values of m and n under 
consideration. In  the inertial subrange, with 7 < r < L ( L  is a length scale associ- 
ated with the large-scale structure), the dependence on v and CI in (1) can be 
ignored (only fluids with Prandtl number v/a near unity are considered here). 
A more general analysis for small r to obtain the dependence on the Prandtl 
number v/a does not appear possible in this case, as the dimensional analysis 
gives only a relation containing an arbitrary function of the two variables r/q and 
Pr 5 v/a. With a and b set to zero, (1) becomes 

( ( A ~ ) ~ ( A O ) ~ )  = Cntnyf(m+n) ( &-8n r xb>- ( 2 )  

I n  particular, the second-order velocity and temperature structure functions 
are given by 

( 3 )  (( A u ) ~ )  = C,, rg (cr)3 

and = C,,r*(e-:xr). (4) 

Kolmogorov (1962) and Oboukhov (1962) assumed that er is lognormally distri- 
buted. Van Atta (1971) assumed that both xr and er are lognormally distributed 
and that their joint probability density is bivariate lognormal: 

P ( x r ,  er )  = [ Z ~ X ,  cr g1 1 - P') 'I-' 

t This expression was used to  compute the joint moments by Van Atta (1971), but 
owing to an oversight an incorrect form for p(xr, e,.) was referred to in that work. 
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where v1 and cr2 are the standard deviations of lnx, and lne, respectively, 
m, = (In xr) ,  m2 = (In e,), and p is the correlation coefficient, 

P = ((lnxr- (1nXr)) (ln~r,>)>/~1v2. (6) 

To relate v1 and 0; to r ,  it has further been assumed (Kolmogorov 1962; 
Oboukhov 1962; Van Atta 1971) that 

o-; = A, + p e h  (L/r) ,  erg = A + p l n  (L/r) ,  (7  a,  b )  

where p and ps are universal constants, and A and A ,  are constants which may 
depend on the geometry of the flow (the values of A and A, would almost certainly 
appear to be affected by the choice of the length scale L). Assumptions ( 7 )  and 
the assumed lognormality of 8, and xr are strictly valid for L + r, i.e. for fairly 
high values of the turbulence Reynolds number. 

Using (5) and ( 7 ) ,  the cross-moments (eFx;) can be written down (e.g. Van Atta 
1971) with the further assumption that A = A,  and p = ,us: 

For n = 0, this reduces to (ey) = ( E ) ~  exp [&cgm(m - l ) ]  or 

(ey)  = exp (m(1n e.,) + Jm%i). 

( (AU)~)  = C2,r%(e)6exp (-+A) (L/~)-&fi 

and = Co2r% (e)* h ) e x p  [+A(Q-p)] (L /r )Sp(%-P) .  ( 1 1 )  

( 9 )  

(10) 

Expression (10) is the same as the expression C(e)Qrf(L/r)-+p derived by Yaglom 
(1966) ,  where the coefficient C 3 C2,exp ( - + A )  now depends on the macro- 
structure of the flow. The fourth-order moment ((Au)2(Ae)z) is given by 

((Au)~(AO)~) = C2,r*(e>*(x) exp [+A( - & + p ) ]  (L/r)*p(-*+P), 

The inertial-subrange expressions (3) and (4) can be written as 

and in normalized form, 

The third-order moment ((Au) is given by 

(AU(A@2) = C12r(x>, ( 1 3 )  

an expression derived by Yaglom (1949)  with C12 = - 8. The skewness 

To retrieve the often-cited r3 dependence of the second-order scalar structure 
function (11 ) ,  p is required to be equal to Q (as given by Van Atta 1971). For this 
value of p, expressions ( 1 2 )  and (14) are clearly not independent of r. The value of 
the correlation coefficient p and its possible dependence on r are therefore of some 
importance in determining the dependence on r of the higher-order moments of 
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Au and AO. The magnitude of some of the coefficients CY,,, can be inferred from 
some of the measured moments of structure functions in the inertial subrange. 
The atmospheric results of Paquin & Pond (1971) suggest that C,,, N 2.0 and 
CO2 N_ 1-6 provided that A is of order unity and the coefficient p is not too different 
from $. The value of C,, can be derived less ambiguously a,s (13) involves neither 
A nor p. The data of Paquin & Pond yield C,, = - 8. The coefficients C,,,, for odd 
values of n, should in principle be zero if the small-scale temperature fluctuations 
are assumed to be locally isotropic. This latter assumption is, however, as pointed 
out in 8 3, clearly in error. 

To obtain some idea of the Reynolds number dependence of expressions such 
as (lo),  ( 1  1) and (12), it  is possible to set r equal to the Taylor microscale h (at 
least when L 9 h 71) and use the isotropic turbulence relation L/h = R,/15,t 
where L is defined by the equation ( c )  = Cv3/L (Batchelor 1953, p. 103), C being 
approximately equal to 1.0. A partial summary of the measured values of /A 

compiled by Gibson & Masiello (1972) for high-R, atmospheric turbulence 
suggests an average value of approximately 0.5. This leads to ( ( A U ) ~ )  - R$K 
and a R, dependence for expression (12), when p = $. Both of these dependences 
are probably too weak to be detected experimentally but the dependence of 
( ( a ~ / a x ) ~ ) ,  ( ( a u / a ~ ) ~ )  and ( (aO/a.~)~) has received a good deal of attention, both 
experimentally and analytically. 

5. Experimental results for (aujat), and 
As mentioned in 8 2, the statistics of the fine-scale velocity and temperature 

fields were derived from digital records of &/at and aO/at, the time interval At 
between consecutive samples being 0.83 x 10-4s. To obtain a measure of the 
statistics of xr and er, it is assumed here that these two quantities are represented 
by (aO/ax)t  and (au/az): respectively. This assumption is clearly open to  doubt, 
even in the case of isotropic turbulence (cf. Gibson et al. 1970). The time separa- 
tions At are converted to space separations using Taylor’s hypothesis 

AX = - UAt 

and the averaging length r is then given by r = iAx,  where i = 1, 2 ,  etc. 
The dependence of p on r is shown in figure 5. I n  the inertial subrange, r/T is in 

the range 6-25. However, it should be cautioned that there exists a certain 
amount of vagueness in the definition of the limits of an inertial range and 
different kinds of measurements may be interpreted as defining different limits. 
For example, Van Atta & Chen (1970) found that measurements of second-order 
structure functions in atmospheric turbulence lead to a lower limit of the inertial 
subrange a t  about 5 0 ~ .  It seems natural to think that for very large Reynolds 
numbers p must be constant in the proper inertial subrange (although there is no 
strict proof of this statement) since the main contributions to c and x are associ- 
ated with spatial length scales much smaller than those in the inertial range. At 

t A more rigorous derivation of the Reynolds number dependence of the higher-order 
moments of the velocity and temperature derivatives can be found in Van Atta (1973) and 
Antonia & Van Atta ( 1  974). 
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FIGURE 5. Correlation coefficients p and p’ as functions of r .  
0, p’, equation (15); 0, p, equation (6).  

the lower end of this range the values of p may have been affected by the wire 
length l/r II 6.7 but at  the higher end of this range p continues to increase signifi- 
cantly. For r / r  > 800, the results suggest that p reaches a constant value of about 
0.84. Also shown in figure 5 is the correlation p‘ between [(au/ax):] and 
[(aO/ax)3, defined as 

, (15) 
p’ = ( [ (aww;  - ((aO/ax);>l [(aulax): - <(aZ@4:)1) 

a; a; 

where a; and g L  are the standard deviations of (aO/ax): and (au/ax): respectively. 
The coefficient p’ appears to be proportional to lnr  throughout the range of 
r considered here. 

To test the assumption of lognormality of xr and E~ and the IognormaIity of 
their joint probability density, some of the higher-order moments of 

x = In xr - (In x,) and 

and of their product have been computed and are given in figures 6 and 7. As 
asserted by Oboukhov (1962), the assumption of lognormality is a reasonable 
approximation in that “the distribution of any essentially positive characteristic 
can be represented by a logarithmically Gaussian distribution with correct values 
of the first two moments”. The third and fourth moments of x and y provide, 
however, a better indication of the suitability of the probability density. The 
skewnesses of x, y and xy - (xy) are given in figure 6. The skewness of x (defined 
as (x3)/(x”) is essentially positive (except at the smallest value of r )  with an 
average value of about 0-2. The skewness of y is negative but of similar magnitude 
to that of x. The product xy has an average skewness of about 2.2. Using the 
assumed normality of the joint probability density of x and y, the skewness of 
xy-(xy) is given by 2p(p2+3)/(p2+1)9 (cf. Antonia & Atkinson 1973). This 
distribution overpredicts the measured values except in the inertial subrange. 

y = In E,. - (In E,.) 
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x/d = 59, U,lTJ, = 16.3. 

The flatness factors of x and y (defined as (x4)/(x2)>" and (y4)/(y2)2 respec- 
tively), shown in figure 7 ,  are not too different from the Gaussian value of 3.0 
over most of the r / r  range. The departure a t  the largest values of r probably 
cannot be trusted in view of the rather small number of samples used in 
obtaining these estimates. The flatness factor of xy - (xy) derived by using 
the Gaussian joint probability density is 

(9p4 + 42p2 + 9)/(p2 + 
and is significantly higher than the measured values except once more for 
rfq < 30. It should be pointed out here that, as shown by Novikov (1971), 
although the lognormal distribution is a good asymptotic approximation, the 
moments need not tend towards the expressions resulting from the limiting 
distribution. 

The verification of assumptions (7) is partially demonstrated by the results in 
figure 8, where the measured u: and ui are plotted against In (L / r ) ,  where L is here, 
for convenience, derived from the isotropic relation for a jet, L/h = AR,,. The 
range of linear dependence of gz on In (Llr) is small and coincides approximately 
with the range of validity of the lognormal distributions. The values o f p  and ps 
are about 0.7 whilst A, is slightly larger than A. From measurements on the axis 
of a heated jet of large diameter, Masiello (1971) reports values of 0.46 and 0.84 
for A, and A respectively whilst p = 0.47 and p, = 0.68. The present asymptotic 
approach to zero of u: and u; as r becomes large is as expected and indicates that 
little significance can be given to the apparently good agreement of the flatness 
results of figure 9 for large values of r .  Further support for the validity of (7a)  
with p, = 0.7 is provided by a few other results for u: (figure 8) for different x/d 
and q/U,. It is difficult to comment a t  present on the apparently lower value of 
A ,  for x/d = 59 (q./Ul = 16.3) in view of the uncertainty associated with the 
estimation of the length scale L. The flatness factors Fl and Fz defined as 

PI = ( [ ( a e / a ~ ) ~ ] ~ ) / ( ( a e / a ~ ) ~ ) ~  and F, = ([(au/a~)~]~)/((au/ax)">" 
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FIGURE 9. Comparison of flatness factors P,  and P2 with calculations using the lognormal 

( ( a u / a ~ ) ; ) ~ ;  0, Fz = expci. 
distribution. -, PI = (((af?/tb)2,)2)/((a6/&):)2; 0, PI = exput; - - ? 4 = ( ( ( a 4 a Z y ) l  

should become equal to the flatness factors of %/ax and au/ax respectively as 
r approaches 7. Using (9), it  follows that Fl = exp CT: and F2 = exp CT;. The calcu- 
lated Fl and F, are compared with the measured values in figure 9. The agreement 
is good except at  the lowest values of r / r ,  where the inferred values of Fl and F, 
are significantly higher than the measured values. Note that, at  r / y  2: 6, the 
measured values of Fl and F, are well below the magnitudes of the flatness factors 
of the unaveraged derivatives, i.e. 

((ae/ax)4)/((aO/ax)2)2 and ( ( a ~ / a x ) ~ ) / ( ( a u / a x ) ~ ) ~ .  

Indirect support for the present value of p or ,us is available from the spectral 
densities of the fluctuations of ( a O / a t ) z  and (&i/at)2 relative to their respective 
mean values. The spectra of figure 10 have been normalized so bhat 

JOrn$82(k,7)d(kl?l) = 1 7  loW $&17W17) = 1. 

The shapes of the two spectra are closely similar and in the inertial subrange the 
slopes of q5ez and are reasonably approximated by -4. Note that, for 
kly > 0-1, there is a significant increase in the spectral densities of ti2 and 82. This 
increase is also present in the $us spectrum for the jet data of Friehe, Van Atta & 
Gibson (1972) and the atmospheric data of Wyngaard & Pao (1972). Yaglom 
(1 966) has predicted that, in the inertial subrange, the spectrum of the dissipation 
fluctuations is given by k l + p .  Provided that the one-dimensional spectra of C 2  
and o2 can be loosely interpreted as the spectra of dissipation fluctuations of 
velocity and temperature respectively, it follows that po = p = 8, in reasonable 
agreement with the value of 0.7 inferred from figure 9. As mentioned previously 
most of the estimates of p for high-R, atmospheric turbulence data suggest 
a value close to 0.5. A spectrum of (&/at), measured by Wyngaard & Tennekes 
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(1970) in a curved mixing layer (R, = 200) gives 7 = 0.85 whilst the spectrum of 
(au/at)2 obtained by Friehe et al. (1973) on the axis of a round jet (R, 2: 540) gives 
,u 21 0.5. 

6. Conclusions 

between (au/ax): and (aO/ax):. The normalized correlation coefficient 
The experimental results of $53 and 5 indicate a fairly strong correlation 

<(au/ax): ( a O / a ~ ) : > / c ( a ~ l w : >  ((wax):) 
is as high as 0.7 in a range of r coinciding with the inertial subrange of velocity 
and temperature fluctuations. 

The assumed lognormality for (au/ax)z and (aO/ax): can only be considered as 
reasonable for values of r/q less than 30, in view of the relatively moderate 
Reynolds number of the present experiment and the, as yet unsupported, 
assumption that (au/ax)," and (aO/ax): are close approximations to E,. and xr 
respectively. Gibson et al. (1970) have suggested that the approximation 
x,. - (aslax):  may be better than cr - (au/ax)," but the present results indicate 
that the deviation of the probability density of ln(aO/ax): from the Gaussian 
distribution can be as large as that for In (au/ax):. The skewness of 

In (aO/ax): - (In (aO/ax):) 
is positive whilst that  of 

In (au/ax)F - (In (au/ax)F) 

is negative for the whole range of values of r considered. The assumed log- 
normality for the probability density of the product (au/ax): (aO/ax); is also 
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reasonable for r / r  less than about 30. It should be re-emphasized that the present 
results obtained near r / y  2i 10 must be treated with caution as the wire length 
was approximately 6.77. 

The variance relations (7)  have also been verified over a range for r / r  coinciding 
with reasonable lognormality of (au/az): and (aO/ax):. I n  particular, the assump- 
tion that ,u = ,us appears satisfactory and the present measured value of ,u is 
about 0.7, which is somewhat higher than the value of 0.5 often quoted for 
atmospheric data. The data also suggest that A 2i A,  but the magnitude of A 
and its possible dependence on the nature and geometry of the flow are yet to 
be ascertained. 

The correlation coefficient p [equation (S)] introduced by Van Atta (1971) is 
not constant in the inertial subrange but increases from about 0.5 to 0.7. This 
dependence on r ,  if true also for the true variablesg and xr, could change the rather 
simple predictions for the structure functions of velocity and temperature 
fluctuations presented in $4. The analysis given in $4 showed that a unique 
value of p could not satisfy the r% dependence of the structure function 
of the temperature and the often-assumed independence of r of the cross-moments 
of Au and AO, such as given by the skewness in (14). It is strongly recommended 
that further measurements of p be made in high-R, flows, preferably in the 
atmospheric surface layer above land or water, where velocity and temperature 
fluctuations usually occur together and where the limitation of spatial resolution 
of the wire is less critical than for laboratory flows. 

The work described here represents part of a programme of research supported 
by the Australian Research Grants Committee and the Australian Institute of 
Nuclear Science and Engineering. At UCSD, the work of C.V.A. was supported 
by N.S.F. Grant GK-43643X and by the Advanced Research Projects Agency of 
the Department of Defence, monitored by the U.S. Army Research Office under 
Contract DAHC 04-73-G0037. 

R E F E R E N C E S  

ANTONIA, R. A. 1973 Some small scale properties of boundary layer turbulence. Phys.  
Fluids ,  16, 1198. 

ANTONIA, R. A. 1974 The distribution of temperature in the intermittent region of a 
turbulent shear flow. Proc. 5th I n t .  Heat Transfer Conf., Tokyo,  vol. 2, p. 92. 

ANTONIA, R.  A. & ATKINSON, J. D. 1973 High-order moments of Reynolds shear stress 
fluctuations in a turbulent boundary layer. J .  Fluid Mech. 58, 581. 

ANTONIA, R. A. & BILGER, R. W. 1973 An experimental investigation of an axisymmetric 
jet in a co-flowing air stream. J .  Fluid Mech. 61, 805. 

ANTONIA, R. A. & VAN ATTA, C. W. 1974 Prediction of high-order moments of turbulent 
temperature derivatives for large Reynolds numbers. Phys.  Fluids (in press). 

BATCHELOR, G. K. 1953 T h e  Theory of Homogeneous Turbulence. Cambridge University 
Press. 

CLAY, J. P. 1973 Turbulent mixing of temperature in water, air and mercury. Ph.D. 
thesis, University of California, San Diego. 

FIEDLER, H. 1974 Transport of heat across a plane turbulent mixing layer. A d v .  in. 
Geophys. (in press). 

FREPMUTH, P. & UBEROI, M. S. 1971 Structure of temperature fluctuations in the turbu- 
lent wake behind a heated cylinder. Phys.  Fluids ,  14, 2574. 



288 

FREYMUTH, P. & UBEROI, M. S. 1973 Temperature fluctuations in the turbulent wake 
behind an optically heated sphere. Phys.  Fluids,  16, 161. 

FRIEHE, C., VAN ATTA, C. W. & GIBSON, C. 1972 Jet  turbulence dissipation rate measure- 
ments and correlations. A G A R D  Current Paper, no. 93, 18-1. 

GIBSON, C.  H. & MASIELLO, P .  1972 Observations of the variability of dissipation rates 
of turbulent velocity and temperature fields. In Statistical Models and Turbulence. 
Lecture Notes in Physics, vol. 12 (ed. XI. Rosenblatt & C. Van Atta), p. 427. Springer. 

GIBSON, C. H., STEGEN, 0. R. & WILLIAMS, R. B. 1970 Statistics of the fine structure of 
turbulent velocity and temperature fields measured a t  high Reynolds number. J .  F l ~ i d  
Mech. 41, 153. 

KOLMOGOROV, A. N. 1941 The local structure of turbulence in an incompressible fluid for 
very large Reynolds numbers. Dokl. Akad.  Nauk .  S.S.S.R. 30, 301. 

KOLMOGOROV, A. N. 1962 A refinement of previous hypotheses concerning the local 
structure of turbulence in a viscous incompressible fluid a t  high Reynolds number. 
J .  Fluid Mech. 13, 82. 

KUO, A. Y .  & CORRSIN, S.  1971 Experiments on internal intermittency and he-structure 
distribution functions in fully turbulent fluid. J .  Fluid Mech. 50, 285. 

MASIELLO, P .  J. 1974 Intermittency of the fine structure of turbulent velocity and 
temperature fields measured a t  high Reynolds number. Ph.D. thesis, University of 
California, San Diego. 

NOVIKOV, E. A. 1971 Intermittency and scale similarity in the structure of a turbulent 
flow. Prikl. Math. Mech. 35, 266. 

OBOUKHOV, A. M. 1962 Some specific features of atmospheric turbulence. J .  Fluid Mech. 
13, 77. 

PAQUIN, J. E. & POND, S. 1971 The determination of the Kolmogoroff constants for 
velocity, temperature and humidity fluctuations from second- and third-order 
structure functions. J .  Fluid Mech. 50, 257. 

SAFFMAN, P. G. 1968 Lectures on homogeneous turbulence. In  Topics in Non-Linear 
Physics (ed. N. Zabusky), p. 485. Springer. 

VAN ATTA, C. W. 1971 Influence of fluctuations in local dissipation rates on turbulent 
scalar characteristics in the inertial subrange. Phys.  Fluids,  14, 1803. 

VAN ATTA, C. W. 1973 On the moments of turbulent velocity derivatives for large 
Reynolds numbers. CharLes KoEling Res. Lab., Dept. Mech. Engng, University of Sydney, 
Tech. Note, F-49. 

VAN ATTA, C. W. 1974 Influence of fluctuations in dissipation rates on some statistical 
properties of turbulent scalar fields. Izv .  Atmos. Ocean. Phys.  7 (in press). 

VAN ATTA, C. W. & CHEN, W. Y .  1970 Structure functions of turbulence in the atmo- 
spheric boundary layer over the ocean. J .  Fluid Mech. 44, 145. 

WYNGAARD, J. C. 1968 Measurements of small-scale turbulence struchre with hot wires. 
J .  Sci.  Innstrum,., J .  Phys.  E 1, 1105. 

WYNGAARD, J. C. 1971a Spatial resolution of a resistance wire temperature sensor. 
Phys.  Fluids, 14, 2052. 

WYNGAARD, J. C. 1971 b The effect of velocity sensitivity on temperature derivative 
statistics in isotropic turbulence. J .  Fluid Mech. 48, 763. 

WYNGAARD, J. C. & PAO, Y. H. 1972 Some measurements of the h e  structure of large 
Reynolds number turbulence. In Statistical Models and Turbulence. Lecture Notes 
in Physics, vol. 12 (ed. M. Rosenblatt & C. Van Atta), p. 384. Springer. 

WYNGAARD, J. C. & TENNEKES, H. 1970 Measurements of the small-scale structure of 
turbulence a t  moderate Reynolds numbers. Phys.  Fluids, 13, 1962. 

YAGLOM, A. M. 1949 On the local structure of the temperature field in a turbulent flow. 
Dokl. Akad.  hTauk. S.S.S.R. 69, 743. 

YAGLOM, A. M. 1966 The influence of fluctuations in energy dissipation on the shape of 
turbulence characteristics in the inertial interval. Sow. Phys.  Dokl. 11, 26. 

R. A. Antonia and C.  W .  Van Atta 




